Detection of Calendar-Based Periodicities of Interval-Based Temporal Patterns
نویسندگان
چکیده
We present a novel technique to identify calendar-based (annual, monthly and daily) periodicities of an interval-based temporal pattern. An interval-based temporal pattern is a pattern that occurs across a time-interval, then disappears for some time, again recurs across another time-interval and so on and so forth. Given the sequence of time-intervals in which an interval-based temporal pattern has occurred, we propose a method for identifying the extent to which the pattern is periodic with respect to a calendar cycle. In comparison to previous work, our method is asymptotically faster. We also show an interesting relationship between periodicities across different levels of any hierarchical timestamp (year/month/day, hour/minute/second etc.).
منابع مشابه
Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks
We present a system to analyze time-series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo-referenced sensor data, in particular for anomaly detection. We split the recordings into fixed-length patterns and show them in order to compare them over time and space using two linked views. Apart from geo-based comparison across sensors we also s...
متن کاملDiscovering Calendar-based Temporal Association Rules
A temporal association rule is an association rule that holds during specific time intervals. An example can be that eggs and coffee are frequently sold together in morning hours. This paper studies temporal association rules during time intervals specified by user-given calendar schemas. Generally, the use of calendar schemas makes the discovered temporal association rules easier to understand...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملRegularized Autoregressive Multiple Frequency Estimation
The paper addresses a problem of tracking multiple number of frequencies using Regularized Autoregressive (RAR) approximation. The RAR procedure allows to decrease approximation bias, comparing to other AR-based frequency detection methods, while still providing competitive variance of sample estimates. We show that the RAR estimates of multiple periodicities are consistent in probabilit...
متن کاملPerformance Improvements and Efficient Approach for Mining Periodic Sequential Access Patterns
Surfing the Web has become an important daily activity for many users. Discovering and understanding web users’ surfing behavior are essential for the development of successful web monitoring and recommendation systems. To capture users’ web access behavior, one promising approach is web usage mining which discovers interesting and frequent user access patterns from web usage logs. Web usage mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1202.2926 شماره
صفحات -
تاریخ انتشار 2012